Optimization of Material Properties Using Genetic Algorithms

Krzysztof WIERZBANOWSKI and Jacek TARASIUK

AGH University of Science and Technology, Kraków, Poland
The genetic algorithms method (GAM) was originally based on ideas taken from biological evolution theory.

Now, GAM is a modern computer technique widely used in different fields of science and technology.
Basic elements of GAM

In GAM it is not necessary to know a priori a general scheme of solution of a given problem.

It is important to have a procedure estimating the quality of a solution, i.e.: \textit{accommodation function}

Each possible solution \(I \) of a studied problem is called an \textit{individual} and is defined as a string of coefficients \textit{(coding procedure)}, e.g:

\[I \left(p_1, \ldots, p_2, p_3, \ldots, p_M \right) \]
The algorithm starts with an initial random set of solutions: \(I_1, I_2, \ldots, I_N \):

\[
I_1(p_{11}, \ldots, p_{12}, p_{13}, \ldots, p_{1M}) \\
I_2(p_{21}, \ldots, p_{22}, p_{23}, \ldots, p_{2M}) \\
\ldots \\
I_N(p_{N1}, \ldots, p_{N2}, p_{N3}, \ldots, p_{NM})
\]

The set of solutions is called population \(P \).
In consecutive iterations we perform: *reproduction*, *mutation* and *crossover*

* During *reproduction* each solution l_n from the population P_k gets some number of copies (proportional to its accommodation factor).
 The solutions with accommodation factor below a mean value for the population are removed.
*During **crossover** some (randomly chosen) pairs of solutions are retained. Next, some parts of their coefficient strings are cut in the same point and are interchanged.

\[I_x(p_{x1}, \ldots, p_{xr}, p_{x(r+1)}, \ldots, p_{xM}) \]

\[I_y(p_{y1}, \ldots, p_{yr}, p_{y(r+1)}, \ldots, p_{yM}) \]

solutions \(I_x \) and \(I_y \) before crossover

\[I_x(p_{y1}, \ldots, p_{yr}, p_{x(r+1)}, \ldots, p_{xM}) \]

\[I_y(p_{x1}, \ldots, p_{xr}, p_{x(r+1)}, \ldots, p_{yM}) \]

solutions \(I_x \) and \(I_y \) after crossover

* During **mutation** some coefficients in some solutions are randomly changed
Problem of texture analysis

pole figures

orientation distribution function (ODF)
Idea of texture decomposition.....

Rolling copper texture

Exemple standard functions

\[
\begin{align*}
\text{Component} & \quad \text{Component symbol} & \phi_1 & \phi & \phi_2 \\
\{112\}<111> & \text{Copper, C} & 90 & 35 & 45 \\
\{123\}<634> & \text{S} & 59 & 37 & 63 \\
\{011\}<100> & \text{Goss, G} & 0 & 45 & 90 \\
\{011\}<211> & \text{Brass, B} & 35 & 45 & 90 \\
\{4,4,11\}<11,11,8> & \text{Dillamore, D} & 90 & 27 & 45 \\
\{001\}<100> & \text{Cubic} & 0 & 0 & 0 \\
\end{align*}
\]

Texture components in rolled FCC metals

\[B \text{ component: } (35^0,45^0,90^0) \quad S \text{ component: } (59^0,37^0,63^0)\]
Use of GAM in texture decomposition

Idea of texture decomposition

Definition of STANDARD function (Gauss-shaped function; Matthies, 1987):

\[f(S, \varpi) = N(S) \exp(S \cos \varpi) \]

where: \(\varpi = \varpi(g_o, g) \) - is the angular distance between orientations \(g_o \) and \(g \) \((0 \leq \varpi \leq \pi)\)

\(S \) - is connected with the peak width: \(S = \ln 2/\left[2\sin^2(b/4)\right] \) with \(b \leq 2\pi \)

\(N(S) \) - is the normalization constant; \(N(S) \approx e^{-S} \sqrt{8\pi S^3} \)
Our goal is to decompose ODF into a sum of standard functions:

\[F(g) = \sum_{m=1}^{M} a_m f_m (b_m, g_{0(m)}) \]

Each solution for \(F(g) \), i.e.: \(l_n \) contains the share coefficients \((a_m) \), widths \((b_m) \) and three Euler angles defining the centres of the Gauss functions: \(g_{0(m)} = g_0 (\phi_{1(m)}, \Phi_m, \phi_{2(m)}) \):

\[l_n (a_1, b_1, \phi_{1(1)}, \Phi_1, \phi_{2(1)}, a_2, b_2, \phi_{1(2)}, \Phi_2, \phi_{2(2)}, \ldots, a_M, b_M, \phi_{1(M)}, \Phi_M, \phi_{2(M)}) \]

The **accommodation condition** is:
the sum of standard functions has to be as close as possible to the analysed ODF (\(\chi^2 \) test is used).
Example 1: Cold rolled brass texture

- Experimental texture
- Texture reproduced by GAM (with M=6 standard functions)

(\(\phi_2\)=const sections are shown)
Example 2: **Cold rolled ferritic steel texture**

- Experimental texture
- Texture reproduced by GAM (with M=5 standard functions)

$(\phi_2=\text{const sections are shown})$
Convergence of the method
GAM on the research of optimal elastic constants

1) Single crystal (grain) tensor S_{mnop} transformed to the sample co-ordinates system:

$$S_{ijkl}'(g) = g_{im}^T g_{jn}^T g_{ko}^T g_{lp}^T S_{mnop}$$

where g_{ij} is the transformation matrix (from crystal to sample reference system):

$$g_{ij} = \begin{bmatrix}
\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 \cos \Phi & \sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2 \cos \Phi & \sin \varphi_2 \sin \Phi \\
-\cos \varphi_1 \sin \varphi_2 - \sin \varphi_1 \cos \varphi_2 \cos \Phi & -\sin \varphi_1 \sin \varphi_2 + \cos \varphi_1 \cos \varphi_2 \cos \Phi & \cos \varphi_2 \sin \Phi \\
\sin \varphi_1 \sin \Phi & -\cos \varphi_1 \sin \Phi & \cos \Phi
\end{bmatrix}$$
2) Transformed elastic tensor is averaged (using texture function $F(g)$):

\[
S_{ijkl}^M' = \int_{\Omega} S_{ijkl}'(g) F(g) \, dg = \int_{\Omega} g_{im}^T g_{jn}^T g_{ko}^T g_{lp}^T S_{mnop} F(g) \, dg
\]
Example: **Optimization of Young modulus:**

\[E = \frac{1}{S_{1111}} \]

a) Find a texture, which gives a **minimal** \(E \) (along \(x_1 \) axis).

Hence: \[S_{1111} = \max \]

Texture found by GAM

\[\phi_1 \rightarrow \Phi \]

\[\phi_2 = 45^\circ \] section is shown

It is the cube texture: \((001)[100] \)
Example: **Optimization of Young modulus:** $E = 1/S_{1111}$

b) Find a **texture**, which gives a **maximal** E (along x_1 axis).

Hence: $S_{1111} = \min$

Texture found by GAM

It is superposition of $(112)[\bar{1}11]$ and $(110)[\bar{1}11]$ components

$\varphi_2=45^0$ section is shown
Analytical verification

For **cubic crystal symmetry**, for an orientation \(\mathbf{g}\) and for
\[S_{11} = 7,5682 \cdot 10^{-6} \text{ MPa}^{-1}, \quad S_{12} = -2.78 \cdot 10^{-6} \text{ MPa}^{-1}, \quad S_{44} = 8,5911 \cdot 10^{-6} \text{ MPa}^{-1} \]
one obtains for \(S_{11}'\):

\[
S_{11}' = 7.5682 - 12.1053 \left(g_{11}^T T^2 g_{12}^T + g_{12}^T T^2 g_{13}^T + g_{13}^T T^2 g_{11}^T \right)
\]
a) **minimal** value of Young modulus corresponds to **zero** value of the following factor:

\[
X = g_{11}^T g_{12}^T + g_{12}^T g_{13}^T + g_{13}^T g_{11}^T = 0
\]

This is fulfilled for \{hkl\}<100> texture components.

In fact, the texture minimizing Young modulus found by GAM analysis, is the **cube texture** (001)[100], for which \(X=0\).

so, O.K.
b) **maximal** value of Young modulus corresponds to:

\[
X = g_{11}^T g_{12}^T + g_{12}^T g_{13}^T + g_{13}^T g_{11}^T = 1/3
\]

This is fulfilled for \(\{hkl\}<111> \) **texture components**.

In fact, the texture maximizing Young modulus, found by GAM analysis, is the superposition of \((112)[\overline{1}11]\) and \((110)[\overline{1}1\overline{1}]\) components

so, O.K.
Conclusions

GAM can be used to find material parameters which lead to optimal application properties.

It furnishes good enough results (but not necessarily the best one), verifying some imposed criteria.

In each practical case a reasonable compromise between the calculation time and the solution quality has to be found.

In the present work the test example of optimisation concerns the Young modulus, but the method is quite general and it can be applied to other physical properties.