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1 Presentation of scientific achievements forming the
basis for habilitation proceeding

As a scientific achievement within the meaning of Art. 16, par. 2 of the Act of 14
March 2003 “On Academic Degrees and Academic Title and on Degrees and Title in
Art” (Journal of Laws No. 65, item 595, as amended) I present a series of six related
publications

[H1] K. Malarz, J. Czaplicki, B. Kawecka-Magiera, and K. Kułakowski. “Average
distance in growing trees”. International Journal of Modern Physics C 14.9
(2003), 1201–1206.

[H2] K. Malarz, J. Karpińska, A. Kardas, and K. Kułakowski. “Node-node distance
distribution for growing networks”. TASK Quarterly 8.1 (2004), 115–119.

[H3] K. Malarz and K. Kułakowski. “Dependence of the average to-node distance on
the node degree for random graphs and growing networks”. European Physical
Journal B 41.3 (2004), 333–336.

[H4] K. Malarz and K. Kułakowski. “Matrix representation of evolving networks”.
Acta Physica Polonica B 36.8 (2005), 2523–2536.

[H5] K. Malarz and K. Kułakowski. “Memory effect in growing trees”. Physica A
345.1-2 (2005), 326–334.

[H6] K. Malarz. “Numbers of n-th neighbors and node-to-node distances in growing
networks”. Acta Physica Polonica B 37.2 (2006), 309–318.

under a common title: “The construction and use of distance matrix to study the
topological properties of complex networks”.

1.1 Introduction

1.1.1 The growing networks

The intensity of complex networks [2, 9, 11, 12] studies by physicists definitely intensified
after the publication in 1999 in Science the paper by Albert and Barabási entitled “The
emergence of scaling in random networks” [19]. Search for “complex networks” in the
Web of Science database now returns 11 433 papers of which only 196 published before
the year of Ref. [19] publication. The paper [19] has today more than nine thousand
citations. What was the phenomenon of the discovery of Albert and Barabási?

To answer this question we have to return to the works of the Hungarian mathemati-
cians published in the sixties of the twentieth century... In Refs. [27, 29] Erdős and Rényi
studied classical random graphs (now also often referred to as Erdős–Rényi networks).
These graphs are created by a random connection of N nodes with L edges. The nodes
degree distribution of such graphs proved to be Poissonian

Pk(k) =
k̄k

k!
exp(−k̄), k̄ =

1

N

N∑
i=1

ki, (1)

where k̄ is the average degree of vertex. This means that in classical random graph there is
a “typical” node having “typical” number of the nearest neighbours. Meanwhile, the real
networks either technology ones (such as networks of plane connections between the cities,
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power grids, a network of websites or the Internet lying in a layer of its infrastructure)
or social networks (networks of friends and their virtual counterparts in social networks,
networks of movie actors linked by an edge if they performed in the same movie or networks
of scientists linked by an edge if they are co-authors of the same publication, etc.) do not
possess such “typical” node. The above-mentioned networks have mostly the power-law
distribution of degrees of vertices

Pk(k) ∝ k−γ, (2)

with an exponent γ ∈ [1, 3].
Reason for the popularity of Ref. [19] was identification, by Barabási and Albert, of the

mechanism of a random complex networks creation, which leads to scale-free distribution
of nodes degrees (2). This mechanism is based on the snowball effect (or evangelical
Mathew effect1): Barabási and Albert network is a growing network, i.e. new network
nodes are attached to the pre-existing structure using m links and the probability of the
creation of links to existing nodes is proportional to their current degree k. The Albert
and Barabási algorithm leads to the creation of hubs in a network: a small privileged
“caste” of nodes with an above-average amount of its nearest-neighbours.

Another example of growing networks are exponential networks. The name of the
network—as in the case of scale-free networks—mirrors the shape of the probability dis-
tribution of node-degrees of the network

Pk(k) ∝ a−k, a > 0. (3)

An example of a real-world network with exponential nodes degrees distribution is, for
example, power grid of western United States [35]. In contrast to the scale-free network in
exponential growing network new nodes are attached with m bonds to an existing network
in a totally random manner and not in a preferential one. The i-th node added to the
exponential network is attached by m edges to m among i − 1 pre-existing nodes. The
probability of selecting a node to which the connection will take place is given as [6]

p(k, i) =
1

i− 1
, (4)

while for growing scale-free networks this probability is [6, 15, 18]

p(k, i) =
1 + ki/m

2i
. (5)

In both cases (i.e. for exponential and scale-free) of growing networks the starting point
for the growth process of the network is fully connected graph with m vertices, where m
is the number of bonds used to attach a new node to the existing network.

In Refs. [H1, H2, H5, H6] the topological properties of the growing network were
discussed.

1.1.2 Small worlds

A distinct feature many growing network is the presence in them of the “small world”
effect. This effect manifests itself as not faster than logarithmic increase of the average

1For whoever has will be given more, and they will have an abundance. Whoever does not have, even
what they have will be taken from them. [Matthew 25:29]
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distance dN between network nodes2 with the network size N . For example, a network
in which nodes are N = 450000 actors linked together with edges if they starred in the
same movie, the average distance between nodes is only 3.5 [9].

“Small world” effect was detected nearly fifty years ago by Milgram in a brilliant
sociometric experiment [24]. In this experiment, a group of people was asked to send a
letter through intermediaries to a broker in Boston. The selection of intermediaries had
to be made among senders’ friends, who (in the senders’ assessing) might know the broker
or at least might know broker’s friends. Although many of letters on their way to Boston
were lost and never arrived there, the ones that reached a broker needed on average less
than seven intermediaries. This is way the “small world” effect is often referred as “six
degrees of separation” hypothesis.

This effect occurs not only in the growing networks discussed above but also in classical
random networks or a Watts–Strogatz networks constructed on the basis of the regular
network [35]. In the latter a fraction f edges of regular lattice is randomly rewired to
another nodes in a network. Finding the proper candidate for an intermediary in the
contact processes is not a trivial task, and there are several strategies for its selection.
In Ref. [H3] a measure the effectiveness of the search process for ideal intermediary were
discussed.

1.1.3 Purpose of works [H1–H6]

In Refs. [H1–H3, H5, H6] the algorithms for finding the shortest paths between all pairs of
vertices were presented. In contrast to the conventional algorithms [3] the newly proposed
schemes do not require prior encoding of the graph structure in an adjacency matrix or
an adjacency list. For evolving (growing) networks the newly designed algorithms allow
for distance matrix creation simultaneously with the growth of the network itself. Then,
the obtained distance matrices were used to study the structural and transport properties
of complex networks. Ref. [H4] is devoted to a compact review of the results of the
works [H1–H3].

1.2 Discussion of the works that make up the series of pub-
lications which have been the basis for the request for a
habilitation

1.2.1 K. Malarz, J. Czaplicki, B. Kawecka-Magiera, and K. Kułakowski.
“Average distance in growing trees”. International Journal of Modern
Physics C 14.9 (2003), 1201–1206

In Ref. [H1] node-to-node average distance relationship dN on the number of nodes N in
the growing trees was studied. The term tree means simple undirected connected graph
which does not contain cyclic paths. A characteristic feature of trees is unique path that
one has to travel between two arbitrarily selected nodes—such a travel can be made only
in a unique way. We analyzed two types of growing trees: the so-called exponential trees
and scale-free ones. The exponential tree arises from the process of adding new nodes and
appending them by a single bond (m = 1) to a randomly selected node from an already
existing structure. The growth of scale-free trees is carried out in a similar manner except

2The average node-to-node distance is also often termed as the diameter of the graph and its formal
definition is given by Eq. (6).
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that the selection of the node to which new node is connected takes place according to
the algorithm proposed by Albert and Barabási [19]. In this scheme, the probability of
selection of a node i to which the connection takes place is proportional to the current
node degree k(i).

The traditional approach to determine the average distance between the vertices of the
graph bases on search algorithms, including breadth-first search [26, 31] and depth-first
search [23] and the algorithms for calculating shortest paths between all pairs of nodes [22,
25, 28, 32].

However, in all these cases, the prior knowledge of the adjacency matrix (or list)
representing the graph topology is required. In Ref. [H1] an alternative approach to this
problem was proposed. Determination of the average distance dN between the nodes of
a typical tree tN with N nodes requires determination the distance sN(i, j) between each
pair of nodes i− j among N vertices of the graph. Then

dN ≡

〈
1

N(N − 1)

N∑
i,j 6=i

sN(i, j)

〉
, (6a)

where 〈· · · 〉 stands for the average over the topologically different trees of size N .
A way of selecting a “typical” tree of size N for a family of trees (whether scale-free

or exponential) also requires explanation. Note, that extreme cases of trees, i.e. a star
and a linear chain of nodes have radically different diameters. Therefore, the choice of a
typical tree must be replaced by the averaging procedure over M randomly selected trees
of size N :

dN =
1

N(N − 1)

∑
tN

P (tN)
N∑
i,j 6=i

sN(i, j), (6b)

where P (tN) stands for the probability of tree tN selection and
∑

tN
P (tN) = 1.

The algorithms [3, 22, 23, 25, 26, 28, 31, 32] allow to construct a matrix of distances
SN if we have a network topology encoded as an adjacency list or an adjacency matrix
AN . The adjacency matrix is a binary matrix whose elements

aN(i, j) =

{
1, when nodes i and j are directly connected,
0, otherwise.

The novelty of the approach proposed in Ref. [H1] is based on the distance matrix con-
struction simultaneously with the growth of the tree, i.e. before the construction of a
complete graph adjacency matrix AN . Moreover, the proposed algorithm does not re-
quire prior knowledge of an adjacency matrix or an adjacency list [3, 22, 23, 25, 26, 28,
31, 32].

Having a distance matrix for the tree of size N and adding to that tree (N + 1)-th
vertex we need to add to the distance matrix a new row and a new column which represent
the distances that come with the new node to all other nodes. The elements of this new
(N + 1)-th column (row) are created basing on the elements of the q-th column (row) of
distance matrix, where q corresponds to the label of the node to which the new node is
attached. Distance of the newly added (N + 1)-th node to any other node will be greater
by one than the distance of these nodes to the node labeled as q:

sN+1(N + 1, i) = sN(q, i) + 1, for i = 1, 2, ..., N. (7a)
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Of course, distance matrix is symmetric and on its diagonal has only zero elements:

sN+1(i, N + 1) = sN+1(N + 1, i) and sN+1(N + 1, N + 1) = 0, for i = 1, 2, ..., N. (7b)

Assuming that the distances matrix for N = 4 is given by

S4 =


0 1 2 2
1 0 1 1
2 1 0 2
2 1 2 0


and the fifth node is attached to the node labeled as three yields

S5 =


0 1 2 2 3
1 0 1 1 2
2 1 0 2 1
2 1 2 0 3
3 2 1 3 0

 .
Applying successively Eqs. (7) and (6) we were able to determine numerically depen-

dencies dN for the exponential and scale-free trees. The average 〈· · · 〉 were made over a
thousand of different trees. These relationships are shown in Ref. [H1] in Figure 2. In
both cases, the relationship is logarithmic for large values of N : dN � 2 lnN + c1 for
exponential trees and dN � lnN + c2 for scale-free trees.

Note, that zero elements on the diagonal distance matrix SN allows you to pair the
average node-to-node distance dN with an average distance matrix element `N

`N ≡
1

N2

∑
tN

P (tN)
N∑
i,j

sN(i, j) =

〈
1

N2

N∑
i,j=1

sN(i, j)

〉
(8)

as
(N − 1)dN = N`N . (9)

Eq. (4) displayed in Ref. [H1] shows an iterative formula for average element `N of the
matrix SN . For exponential trees the conditional probability P (q|tN) for attaching a new
vertex to a node labeled as q is 1/N . Taking this fact and Eq. (9) into account, formula
(4) from Ref. [H1] allows deduce an iterative formula for analytical determination of dN+1

if we know dN :

dN+1 =
(N + 2)(N − 1)

N(N + 1)
dN +

2

N + 1
. (10)

Similarly, the average square element of the distance matrix

`2N =

〈
1

N2

N∑
i,j

[sN(i, j)]2

〉
(11)

allows for derivation of the iterative formula for the mean square node-to-node distance

d2N+1 =
(N + 2)(N − 1)

N(N − 1)
d2N +

4(N − 1)

N(N + 1)
dN +

2

N + 1
. (12)

The combination of formulas (4) and (8) from Ref. [H1] allows to construct an iterative
formula for the node-to-node distance variance σ2

N = d2N − (dN)2 for the exponential
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growing trees. Figure 3 in Ref. [H1] presents the dependence dN and σ2
N derived from

iterative formulas for trees with N ≤ 109 vertices. A comparison of these results with
the results of direct simulations for exponential trees of less than a thousand nodes are
presented as well. The results of simulations were averaged over M = 103 realizations of
the growth process. In both cases, i.e. for dN and σ2

N these relationships are linear with
ln(N2). Excellent agreement of the results of direct simulation and iterative formulas for
N ≤ 103 allows apply derived iterative formulas also for N � 103. In these areas of graph
sizes the direct simulations of trees growth is cumbersome, both in terms of time- and
memory-consuming. Additionally, the reliability of the results strongly depends on good
enough statistics, i.e. the number M of trees used in the averaging procedure 〈· · · 〉. Let
us recall, that for sufficiently large values of N the number of trees with N vertices is
given by the approximate Otter’s formula [33]:

TO(N) = β · αN ·N−5/2, α ≈ 2.9557652856, β ≈ 0.5349496061.

So even for N = 103 we have to check a set of M = 7.73× 10462 trees. On the other hand
predictability of these formulas is limited only to the growing exponential trees and hence
the results differ, for example, from those obtained in Ref. [8].

1.2.2 K. Malarz, J. Karpińska, A. Kardas, and K. Kułakowski. “Node-
node distance distribution for growing networks”. TASK Quarterly
8.1 (2004), 115–119

The concept of construction of a distance matrix SN simultaneously with the increase of
the graph presented in Ref. [H1] has been extended in Ref. [H2] for growing simple graphs
where the newly attached (N + 1)-th node is simultaneously attached to m = 2 so far
existing nodes of the graph with N vertices. In this case, the new (N + 1)-th column
(row) added to matrix SN is generated according to the formula:

sN+1(N + 1, i) = sN+1(i, N + 1) = min
(
sN(p, i), sN(q, i)

)
+ 1, (13a)

where the indices p and q correspond to two selected vertices which will join the new
node.

This means that the distance sN+1(N + 1, i) of the newly added node to all the other
vertices 1 ≤ i ≤ N in the network is larger by one than the distance between them
and vertices p or q, and to determine this distance we selected this node of the (p, q)-
pair which gives the shorter path. Since joining the vertex of the graph using the two
bonds can introduce into the network shortcuts between existing vertices, it is necessary
to reevaluate all distances between nodes:

sN+1(i, j) = min
(
sN(i, j), sN(i, p) + 2 + sN(q, j)

)
, 1 ≤ i, j ≤ N. (13b)

The distance matrix diagonal elements are zero like for the trees

sN+1(N + 1, N + 1) = 0. (13c)

Similarly as in Ref. [H1], the selection of the nodes p and q to which the connection
will take place can be random or preferential. In the first case, the distribution of the
graph nodes degree will be exponential Pk(k) ∝ exp(−k) while for the latter case it will
be scale-free Pk(k) ∝ k−γ.
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Basing again on zero diagonal elements of the matrix SN also for non-tree-like networks
we can formulate an analogy to Eq. (9). Namely, we can propose a relation between
average n-th power of the matrix elements snN(i, j) calculated with the diagonal elements
of the matrix SN

`nN =

〈
1

N2

N∑
i,j=1

[s(i, j)]n

〉
, (14)

or without them

dnN =

〈
1

N(N − 1)

N∑
i=1,j 6=i

[s(i, j)]n

〉
(15)

and averaging procedure 〈· · · 〉 takes place over M independent realizations of the network
growth process. Zeros on the diagonal sN(i, i) = 0 make the sum in formulas (14) and
(15) equal each to other, and hence

N`nN = (N − 1)dnN . (16)

For exponential trees—where adding a new node takes place to randomly selected
existing node p—one can build iterative formula

(N + 1)2`nN+1 =

〈
N+1∑
i,j=1

snN+1(i, j)

〉
= N2`2N + 2

〈
N∑
i=1

[1 + s(i, p)]n

〉
, (17)

correlating average matrix element `nN+1 with the corresponding average matrix element
`nN of the network existing before attaching the (N + 1)-th node to the vertex p.

A number “one” appearing on the right hand side of Eq. (17) comes from the freshly
added edge connecting the new node with a node p of the network of size N , while number
“two” appearing before the last sum of the mentioned equation reflects the symmetry of
the matrix S (adding a new (N+1)-th column to matrix S is accompanied by the addition
of this column transposition as the (N+1)-th row of the matrix). Substituting dependence
(16) into the equation (17), we obtain an iterative formula

dnN+1 =
(N + 2)(N − 1)

(N + 1)N
dnN +

2

N + 1
+

2(N − 1)

(N − 1)N

n−1∑
k=1

(
n

k

)
dkN . (18)

Similarly as in Ref. [H1] the correctness of derived iterative formula (18) has been tested
by comparing its predictions with the results of the direct simulation (see Figure 2 in
Ref. [H2]).

For this purpose the matrices SN were generated for the exponential trees with 2 ≤
N ≤ 103 nodes and the average first, second, third and fourth powers of the matrix
elements were calculated. These results were averaged over M = 103 various random
trees and compared with dependencies of `iN for i = 1, 2, 3, 4.

Knowing the average value of n-th power dnN of the off-diagonal matrix elements for
matrix SN allows for checking the node-to-node distance distribution characteristics de-
pendence on the network size. The dependencies of average, variance, skewness and
kurtosis of the above mentioned distribution were shown in Ref. [H2] in Figure 3. The
node-to-node distance distributions accompanied with Poisson distributions were pre-
sented in Figure 1. The Poisson distributions approximate these node-to-node distance
distributions quite fairly.
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For trees (m = 1) and for simple graphs (m = 2) obtained dependencies dN increase
logarithmically with N

dN = a1 lnN + b1,

what indicate that these networks posses the “small world” property. For both, expo-
nential and scale-free, trees (m = 1) also the variance of the node-to-node distribution
σ2
N = (dN)2 − d2N increases logarithmically with N

σ2
N = a2 lnN + b2.

The least squares method best fit values of the parameters a1, b2, a2 and b2 for expo-
nential and scale-free trees (m = 1) and simple graphs (m = 2) are presented in Ref. [H2]
in Tables 1 and 2.

1.2.3 K. Malarz and K. Kułakowski. “Dependence of the average to-node
distance on the node degree for random graphs and growing networks”.
European Physical Journal B 41.3 (2004), 333–336

In Ref. [H3] the concept of the distance matrix construction during the network growth
was extended to the case of the Erdős–Rényi classical random graphs. As mentioned
in the Introduction (Sec. 1.1.1) the classical random graphs can be formed either by a
random combination of N nodes with L edges (the Erdős–Rényi construction [27, 29]), or
through the implementation each of the possible N(N − 1)/2 connections between nodes
with a specified probability p (the Gilbert construction [30]). In the thermodynamic
limit (N →∞) both, the Gilbert and Erdős–Rényi constructions lead to the same result
(p = 2L/[N(N − 1)]). In Ref. [H3] the Gilbert approach was applied to construct the
classical random graph distance matrix. The starting point for constructing matrix SN
for graph with N nodes is a matrix consisting zeros at the diagonal and the off-diagonal
elements equal to or greater thanN . Scanning sequentially the off-diagonal elements of the
matrix sN(i, j < i) ≥ N and replacing them by unity, e.g. sN(i, j) = 1 with probability
p we create an edge between elements i and j. The distance matrix SN is symmetric,
so s(j, i) = s(i, j). The creation of new edge can introduce shortcuts between so far
connected nodes and therefore each link creation must be accompanied by reevaluation
of all elements of a matrix SN :

s(m,n) = min
(
s(m,n), s(m, i) + 1 + s(j, n), s(m, j) + 1 + s(i, n)

)
. (19)

The distance matrix formed in this way corresponds to a connected graph if none of its
elements is greater than N − 1.

The main research task posed in Ref. [H3] has been defined as searching for quan-
titative characteristics of the complex networks allowing for estimating the efficiency of
the contact processes on the networks. The complex networks studied in Refs. [H1–H6]
are characterized by the “small world” effect. As mentioned in the Introduction (Sec.
1.1.2), the “small world” effect was detected in the experiment proposed by Milgram [24].
In this type of contact process to find the most appropriate contact person (the network
node) appears to be a non-trivial task [13, 16]. One of the most obvious methods of the
consecutive nodes selection seems to be selecting nodes being statistically closer to all
other nodes in the network, i.e. the choice of the neighbor, which has the largest number
of its own neighbors. Such strategy proved to be effective in the case of scale-free graphs
but it fails for the classical random graphs [16]. In Ref. [H3] we show that this strategy
works nicely for exponential graphs and especially for exponential trees.

12

http://dx.doi.org/10.1140/epjb/e2004-00326-3
http://dx.doi.org/10.1140/epjb/e2004-00326-3


In order to determine qualitatively the effectiveness of the strategy of finding sub-
sequent nodes through which transportation in the contact process is the most efficient
the distance matrices SN for scale-free, exponential and the Erdős–Rényi networks were
created. Then, for each vertex of the graph its degree k(i) and its average distance ξ(i)
to all other nodes in the network

ξ(i) =
1

N − 1

N∑
j 6=i

sN(i, j)

were determined.
With distance matrix SN , the degree of the i-th vertex of the graph may be calculated

by counting the occurrence of unities in the i-th row (or the i-th column) of the matrix
SN . Now, averaging obtained values ξ(i) over all nodes of degree k(i) one may obtain
the relationship of the mean distance ξ(k) to the node in the network as a function of
the degree of vertex k(i). We expect that the relationship ξ(k) decreases with k as better
connected nodes have a statistically greater chance of short paths to other nodes in the
network. If decreasing ξ with increasing k is evident, the discussed above strategy of
searching for nodes that are good candidates for middleman in the contact process will
be an efficient one. Dependencies ξ(k) for the exponential and scale-free simple graphs
(m = 2) and trees (m = 1) and for the classical random graphs (p = 0.02, 0.05, 0.4) are
shown in Ref. [H3] in Figure 1. Results for graphs with N = 103 nodes are averaged over
the M simulations with M = 107, 103 and 102 for the trees, simple graphs and classical
random graphs, respectively. Also the shapes of the curves ξ(k) for ten times larger trees
(N = 104) but averaged only over M = 10 trees realization are presented there. The
slope of these curves

η(k) = − ∂ξ(k)

∂ ln(k)
(20)

gives just a quantitative measure of the efficiency of the contact process.
Yet another averaging (this time over the vertices degrees k) would allow for each of

the considered network for calculation of a single value η characterizing the “goodness”
of the discussed strategy. As in such average procedure the contribution from the nodes
of the small degree is dominant, the initial shape of the ξ(k) dependence may be crucial.
Instead of such averaging Figures 2(a) and 2(b) [H3] show the full dependence η(k) for
various kinds of networks. Presented results confirm the conclusions given in Ref. [16]
that in the contact processes the nodes search strategy based on searching for the nodes
with highest degree is not suitable for classical random graphs (the factor η practically
does not depend on k and it is close to zero) while this strategy is effective for scale-free
networks. Figures 2(a) and 2(b) in Ref. [H3] show clearly that this strategy works fine
not only for scale-free networks but also for exponential simple graphs (m = 2) and even
better for exponential trees (m = 1).

Enhanced effectiveness of the mentioned searching strategy for exponential trees as
compared to the scale-free networks seems to be directly linked with the hierarchy of
scale-free networks. As a result of the preferential attachment mechanism the fluctuations
of node-degrees appearing in the scale-free networks in the direction of their higher value
are naturally enhanced and network growth takes place in the vicinity of the nodes with
more than the average number of neighbors. Then the discussed nodes search mechanism
for conducting the contact process can lead us only to the local network center. For
exponential trees the effect of local hubs formation is absent and therefore the factor η for
these networks (especially for trees, where the paths between nodes are unique) is high.
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Regardless of the network topology, the discussed strategy of nodes selection has its
natural limits. One may expect, that it ceases to be efficient after reaching the true center
of the network. Once such a center has been found, the method will be unable to indicate a
new, more attractive candidate to navigate through the network. This limitation is shown
in Figures 2(a) and 2(b) in Ref. [H3] as a clear maximum of η(k) dependencies. On the
other hand, Figure 1 in Ref. [H3] shows, that increasing the size of the network does not
affect the shape of dependence ξ(k)—with the exception of shift of the curves for N = 104

as compared to the curves for N = 103 towards the higher values of ξ and logarithmically
slow flow in the direction of higher values of k. As a consequence, dependencies η(k) for
various network sizes do not differ too much but they change—both, qualitatively and
quantitatively—with the change of network generation mechanism.

1.2.4 K. Malarz and K. Kułakowski. “Matrix representation of evolving
networks”. Acta Physica Polonica B 36.8 (2005), 2523–2536

The results published in Refs. [H1–H3] were presented during the “1st Polish Symposium
on Econo- and Sociophysics” [C1.17]. Ref. [H4] included in conference materials contains
a presentation and a summary of the most important results of the above works. In
particular, Ref. [H4] shows the methods of distance matrix SN construction for scale-free
and exponential trees (m = 1) and simple graphs (m = 2) and for classical random
graphs. Also description of the design of iterative rules (18) for the average n-th power
of the node-to-node distance dnN+1 for exponential trees were repeated there. In Figure 7
in Ref. [H4] the values of dnN+1 for n = 1, · · · , 10 and 3 ≤ N ≤ 103 obtained using (18)
dependence were compared with the results of direct computer simulation. In Ref. [H4]
we show methodology of teasing out from distance matrix numerical characteristics of
each node (node-degrees and the average distance to any node in the graph), the global
characteristics of the networks (such as the diameter of the network), and how to examine
in these networks the effectiveness of the contact processes. In addition to presenting the
aforementioned networks topology in Figure 1 (Ref. [H4]), Figure 5 shows also shapes of
node-degrees distributions Pk(k) obtained from the computer simulations as compared
with the theoretical distributions. In Figure 6 (Ref. [H4]) the node-to-node distance
distributions were presented as well.

1.2.5 K. Malarz and K. Kułakowski. “Memory effect in growing trees”.
Physica A 345.1-2 (2005), 326–334

In Ref. [H5] the distance matrix SN construction schemes presented in Refs. [H1, H2] and
iterative rules (18) were applied to study the shape memory effect for growing scale-free
and exponential networks. Both, trees (m = 1) and simple graphs—in which new nodes
added to the growing networks are attached to two of the existing nodes (m = 2)—were
studied. Since there is only single tree with three vertices3 to study the effect of the shape
of the embryo of growing network for network shape evolution as a starting point one
must accept the tree consisting of at least N = 4 nodes. The shapes of these two trees
were marked in Ref. [H5] as Z (for four-nodes chain) and Y (for the star-shaped tree).

3Here, we are talking only about topologically distinguishable trees, i.e. without taking into account
possible graph nodes labelling. In the latter case, the amount of trees tN with N vertices varies according
to the Cayley’s formula tN = NN−2 [34].
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For both of these configurations the distance matrices were constructed:

SZ4 =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

 and SY4 =


0 1 2 2
1 0 1 1
2 1 0 2
2 1 2 0

 .
The initial network structure shape memory effect was studied by observing the dif-

ference between the diameters dN of growing networks

∆1
N ≡ dN(Z)− dN(Y) (21)

and the difference between the mean squares off-diagonal matrix elements d2N of the
distance matrix SN

∆2
N ≡ d2N(Z)− d2N(Y), (22)

where the labels Z and Y refer to the network growing from four-nodes chains and four-
nodes star, respectively.

The dependencies ∆1
N and ∆2

N obtained by direct simulations (i.e. using distance
matrix SN construction scheme given in Eqs. (7) and (13)) and for both types of concerned
trees and for N ≤ 103 are presented in Figures 2 and 3 in Ref. [H5]. The simulation
results were averaged over M = 105 realizations of the network growth process. In Figure
2 in Ref. [H5] these dependencies given by iterative formula (18) for the exponential
trees and 4 ≤ N ≤ 109 are presented as well. In this case, the information about the
initial shape of a tree is encoded in values d4(Z) = 5/3, d24(Z) = 10/3 and d4(Y) = 3/2
and d24(Y) = 5/2. For both kinds of studied trees values ∆1

N tend to a constant value
for N ≈ 100, while ∆2

N is an increasing function of N . This means that studied trees
remember the shape of their “embryo”.

The dependencies ∆1
N and ∆2

N for scale-free and exponential simple graphs are pre-
sented in Figure 6 in Ref. [H5]. The presented results are averaged over M = 103 the
network growth processes. For exponential graphs both of differences ∆1,2

N are equal zero
as soon as the network sizes reaches N ≈ 100 nodes. From that moment network forgets
its original form. For scale-free graphs values ∆1

N < 0.02, while ∆2
N < 0.1 and slowly de-

crease with N . For the latter network it is rather difficult to state clearly whether initial
shape memory effect is present or absent in these graphs basing solely on the observation
of behavior ∆1,2

N for N ≤ 103. Certainly, the initial shape memory effect is for these kind
of networks qualitatively and quantitatively weaker than for three other studied network
types. As the scale-free simple graphs were studied only through direct simulation—which
is naturally limited by the maximum size of the distance matrix SN—and taking into ac-
count the slope of ∆1,2

N dependence, one cannot rule out that for sufficiently large networks
N � 103 the initial shape memory effect will disappear also for this kind of networks.
In the case of the simple graphs—when the newly added node is attached to the existing
network with m = 2 bonds—the “shortcuts” between existing vertices may appear. The
appearance of a shortcut induces a permanent rewriting the distance matrix SN according
to Eq. (13b). Consequently, information about the initial shape of the network encoded
in the 4× 4 upper-left part of the matrix SN is gradually erased. The effect of changes in
these sixteen matrix SN elements is absent in the case of trees and hence the investigated
trees remember their initial shape during network growth.
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1.2.6 K. Malarz. “Numbers of n-th neighbors and node-to-node distances in
growing networks”. Acta Physica Polonica B 37.2 (2006), 309–318

In Ref. [H6] the algorithms for distance matrix SN creation presented in Refs. [H1, H2]
were used to verify by means of direct computer simulations the theoretical predictions
regarding the average number zL of nodes in L-th coordination sphere of a randomly
selected vertex of the complex network. Also the dependence of average node-to-node
distance

λ(π) =

〈
1

Nπ

∑
i,j>i,
kikj=π

s(i, j)

〉
(23)

on the product π of the nodes i and j degrees were studied in Ref. [H6]. In Eq. (23) Nπ

stands for the number of nodes pairs, whose product of degrees kikj is equal to π.
The formula allowing for estimating the amount of neighbors zL in the L-th coordina-

tion sphere of randomly selected node

zL = z2−L1 zL−12 , (24)

was derived using the generating functions formalism [20] and predicted theoretically in
Ref. [17]. In Eq. (24) symbols z1 and z2 stand for the amounts of the nearest neighbours
and the next-nearest neighbours of a randomly selected node, respectively. Of course, the
value of z1 is an average node degree in the network

z1 =

〈
1

N

N∑
i=1

ki

〉
, (25)

while the number of the next-nearest neighbors (z2) is given by the Shargel’s formula [10]

z2 =

〈
1

N

(
N∑
i=1

k2i −
N∑
i=1

ki

)〉
. (26)

Using again the generating functions technique the theoretical dependence λ(π) (de-
fined in Eq. (23))

λ(π) = A+B ln(kikj), (27a)

where

A = 1 +
ln(Nz1)

ln(z2/z1)
i B = − 1

ln(z2/z1)
(27b)

was derived in Ref. [14] and confirmed experimentally in the analysis of the real-world
communication networks as well as in analyses of the simulated classical random graphs
and scale-free networks [4, 5].

Since the generating function formalism has a mean-field character it should work
properly only for homogeneous trees. The mean-field nature of this formalism is associ-
ated with its underlying principle—namely, an assumption of the lack of any correlation
between nodes degrees. However, in the growing trees this assumption is not valid, as
the oldest (and consequently with above-average degree) nodes of such network will be
geometrically closer than nodes added to the network at the end of the growth process
(and which are leafs of the tree).

The purpose of studies described in Ref. [H6] was to determine whether the prediction
of formulas (24), (26) and (27) are suited for exponential trees.
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In order to validate the predictions of Eq. (24) the dependence of difference

δL(N) = z2−L1 zL−12 − zL (28)

on the network size N for L = 3, 4, 5 and N ≤ 103 was tested. The results were averaged
over M = 104 independent network growth processes. The dependence (28) for exponen-
tial and scale-free trees (m = 1) and simple graphs (m = 2) are presented in Figure 1 in
Ref. [H6].

While the size of simulated Albert–Barabasi networks are too small to observe agree-
ment of zL and z2−L1 zL−12 for L = 3, 4, 5 (or such agreement for these networks does not
exist) then for exponential networks—and not just for trees but also for the simple graphs
(m = 2)—δL(N) decreases monotonically with N for N ≈ 100 and larger.

The expected values of the numbers of the nearest neighbours (z1) and the next-nearest
neighbors (z2)—instead of performing direct simulations—can also be determined basing
on nodes’ degrees probability distribution Pk(k). This yields

z1 =
∞∑
i=m

kPk(k) (29)

and basing on (26) also

z2 =
∞∑
i=m

k(k − 1)Pk(k). (30)

The nodes degrees probability distributions for discussed networks are given by

Pk(k ≥ m) =

{
2−k for m = 1,
3
4

(
3
2

)−k for m = 2,
(31)

and

Pk(k ≥ m) =
2m(m+ 1)

(k + 2)(k + 2)k
(32)

for exponential [H4, 12] and scale-free networks [6, 7], respectively.
In the thermodynamic limit (N → ∞) the sum (30) diverges for scale-free networks

(i.e. when the nodes degrees probability distribution Pk(k) is given by (32)). For a finite
but large scale-free networks the sum in Eq. (30) may be fairly approximated as

z2 ≈ ẑ2 =
N−1∑
k=m

k(k − 1)Pk(k) = 2m(m+ 1)
N−1∑
k=m

k − 1

(k + 2)(k + 1)
. (33)

The dependencies ẑ2(N) for m ≤ N ≤ 106 are shown in Ref. [H6] in Figure 2. This sum
grows logarithmically with N � m

ẑ2(N) � am ln(N) + bm (34)

with the least squares method best fits coefficients am = 3.99, bm = −7.55 (for m = 1)
and am = 11.96, bm = −2.66 (for m = 2).

The values of z1 and z2 for the trees (m = 1) and the simple graphs (m = 2) and
for both considered kinds of networks (exponential and scale-free ones) obtained in direct
simulation or calculated from formulas (29) and (30) were collected in Ref. [H6] in Table 1.
The values z1 [Eq. (25)] and z2 [Eq. (26)] obtained in computer simulation agree with the
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values calculated based on the probability distribution (29) and (30) for exponential trees
(m = 1) and exponential simple graphs (m = 2). For scale-free networks this compatibility
concerns only the values of z1 while approximated values of sums ẑ2 (33) differ significantly
from values z2 obtained in direct computer simulation [Eq. (26)]. In Table 1 in Ref. [H6]
the average number z3 of the next-next-nearest neighbours and the values of z3 = z22/z1
calculated basing on Eq. (24) are presented as well. The values of z1 and z2 were obtained
in the direct computer simulation. Similarly as for the numbers of the nearest and the
next-nearest neighbours, the numbers z3 of the next-next-nearest neighbours agree with
theoretical predictions given by Eq. (24) only for exponential networks and this agreement
is slightly better for tress (m = 1) than for simple graphs (m = 2).

In the second part of Ref. [H6] the utility of the Motter et al. formula (27) for the same
set of networks was investigated. The dependencies λ(π) together with the least squares
method fits and theoretical predictions given by Eq. (27) are presented. The values of the
coefficients A and B—which appear in Eq. (27a) and which are provided by Eq. (27b)—are
collected in the lower part of Table 1 [H6] together with the same coefficients determined
by the least squares fit of logarithmic function to the experimental data. Similarly as for
the formula allowing for calculation of the number of successive L-th neighbors [Eq. (24)],
the accuracy of theoretical predictions of Eq. (27) tested by means of computer simulations
is satisfactory for the exponential network but only qualitative for scale-free networks.

As mentioned earlier on page 16, the predictions based on formulas (24) and (27)—
derived in generating functions formalism—should be valid only for homogeneous trees.
Meanwhile, Eqs. (24) and (27) work fine also for the exponential networks and not just for
those having tree-like structure. The conclusions of Ref. [H6] contain suggestion, that the
above-mentioned formulas may be useful for the network having—in the thermodynamic
limit—the finite values of

∑∞
k=m k

2Pk(k).

1.3 Summary

The common topic of Refs. [H1–H6] are computer simulations of the topological properties
of complex networks examined on the basis of the distance matrix SN properties. These
matrices are built according to algorithms presented in Refs. [H1–H3]. These algorithms
allow for the distance matrices SN construction dismissing any necessity of constructing
adjacency lists or adjacency matrix AN .

In summary, the most important achievements published in Refs. [H1–H6] are:

• proposing new algorithms [Eqs. (7), (13) and (19)] for constructing distance ma-
trices SN , which do not require knowledge of the adjacency list or the adjacency
matrix and, on the other hand, permitting for formation of distance matrices SN
simultaneously with the formation of the growing networks [H1, H2, H4] and for
classical random graphs [H3, H4],

• derivation of the iterative formulas [Eqs. (10), (12) and (18)] for the node-to-node
distance distribution moments dnN for the exponential trees [H1, H2, H4],

• introducing the new functional characteristics (20) allowing for examination of the
effectiveness of contact processes on complex networks [H3, H4],

• indicating the existence of the initial shape memory effect in case of growing trees
and the absence of such an effect for simple graphs which do not have a tree struc-
ture [H5]
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• and showing that the formulas (24) and (27)—describing the number of L-th next-
neighbors of the node (L ≥ 3) and the average node-to-node distance in function
of the products of the degrees of vertices, respectively—can be successfully applied
also to the exponential graphs (which not necessarily have to possess a tree-like
structure) [H6].

Most of the algorithms and ideas presented in Refs. [H1–H6] can be successfully applied
to study the networks/graphs constructed as statistical ensembles rather as results of
a growth process. This type of models find application in studies of many real-world
networks (including those in molecular biology, genetics, transportation or sociology)
where equilibration plays an important role. Examples of such systems may be protein
interaction networks or genetic regulatory networks describing biological systems adapting
for a long time to external conditions. For such systems one can define a partition function
and assign a statistical weight to each individual network in the ensemble.

Once the partition function is defined one can ask if there are different phases depend-
ing on parameters of the model and if the system undergoes a phase transition [7]. For
example one can examine how the nature of the phase transition is reflected in geometri-
cal and topological properties of underling network or how the node-to-node distance is
changing or what are the correlations at the transition point.

One can ask if the system self-averages, i.e. if there are typical graphs in the ensemble,
how many loops there are in typical graphs, etc. Erdős–Rényi graphs—which are the
simplest example of a statistical ensemble of graphs—are known to have very few loops.
This turns out to be a generic situation for statistical ensembles of sparse graphs. Many
real-world networks have much more loops than the corresponding Erdős–Rényi graphs,
so an open question is how to generate statistical ensembles of sparse graphs with many
loops.

It turns out that it is not that easy to define such models in a statistical way. The
simplest attempt which relies on introducing a linear coupling for the number of loops is
known to lead to an instability, called Strauss instability [21], which is a sort of phase
transition to a phase, where graphs have a clique maximizing the number of short trian-
gular cycles. These type of graphs, again, are not encountered in real-world networks.
We believe it would be extremely interesting to search for a statistical ensemble of graphs
with many cyclic paths with their density compared to those observed in nature [1].
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[C2.15] K. Höppner, W. Schülke, A. Kaprolat, G. Stutz, S. Kaprzyk, A. Z. Maksymowicz,
K. Malarz, J. Kwiatkowska, and F. Maniawski. “Compton scattering study of
CuAl”. 2nd International Workshop on Compton Scattering and Fermiology.
Tokyo (JP). 1997.

D Preprints and other articles

Preprints

[D1] K. Kułakowski, K. Malarz, and M. J. Krawczyk. “Heavy context dependence—
decisions of underground soldiers”. 2015. arXiv:1502.01646 [physics.soc-ph].

[D2] K. Malarz, A. Kowalska-Styczeń, and K. Kułakowski. “Impact of the workers’
loyalty on the group performance modeled by a bi-layer cellular automaton with
a hysteretic rule”. Submitted to Simulation: Transactions of the Society for
Modeling and Simulation International. 2014. arXiv:1411.4885 [nlin.CG].

[D3] M. Rybak, K. Malarz, and K. Kułakowski. “Competing contact processes in the
Watts–Strogatz network”. Submitted to The European Physical Journal Special
Topics. 2014. arXiv:1411.4901 [physics.soc-ph].

[D4] A. Kaczanowski, K. Malarz, and K. Kułakowski. “Hysteresis loop of a nanoscopic
magnetic array”. 2003. arXiv:cond-mat/0303330.

[D5] K. Malarz and K. Kułakowski. “Cooperation and surviving with limited re-
sources”. 2001. arXiv:cond-mat/0104487.

Others

[E1] K. Malarz and K. Kułakowski. “Mental ability and common sense in an artificial
society”. Europhysics News 45.4 (2014), 21–23.

[E2] K. Malarz. “Wstęp”. Polish. Materiały IV Ogólnoroznej Sesji Kół Naukowych
Fizyków. Ed. by K. Malarz. Zeszyty Studenckiego Towarzystwa Naukowego.
Kraków: Wydawnictwo Studenckiego Towarzystwa Naukowego, 2006, v–vi.

[E3] K. Malarz. “IV Sesja Kół Naukowych Fizyków”. Polish. Postępy Fizyki 57.5
(2006), 235–236.

[E4] K. Malarz. “Studenckie Seminarium Fizyki Biomolekularnej i Medycznej”. Pol-
ish. Postępy Fizyki 56.3 (2005), 130–131.

[E5] K. Malarz. “Automaty komórkowe nie tylko w fizyce”. Polish. Software 2.0 2
(2004), 24–31.

30

http://arXiv.org/abs/1502.01646
http://arXiv.org/abs/1502.01646
http://arXiv.org/abs/1411.4885
http://arXiv.org/abs/1411.4885
http://arXiv.org/abs/1411.4885
http://arXiv.org/abs/1411.4901
http://arXiv.org/abs/1411.4901
http://arXiv.org/abs/cond-mat/0303330
http://arXiv.org/abs/cond-mat/0303330
http://arXiv.org/abs/cond-mat/0104487
http://arXiv.org/abs/cond-mat/0104487
http://dx.doi.org/10.1051/epn/2014402
http://dx.doi.org/10.1051/epn/2014402

	Presentation of scientific achievements forming the basis for habilitation proceeding
	Introduction
	The growing networks
	Small worlds
	Purpose of works [H1]-[H6]

	Discussion of the works that make up the series of publications which have been the basis for the request for a habilitation
	[H1]
	[H2]
	[H3]
	[H4]
	[H5]
	[H6]

	Summary
	References

	Scientific publications in journals covered by the Journal Citation Reports (JCR) database
	Scientific publications in journals not covered by the Journal Citation Reports (JCR) database
	Conference contributions
	Preprints and other articles

