Recenzja dorobku naukowego oraz rozprawy habilitacyjnej pt.
Badanie z pierwszych zasad silnie skorelowanego elektronowo układu z defektami punktowymi Pani dr inż. Urszuli Danuty Wdowik

W roku 1998 Pani Wdowik obroniła swój doktorat na Wydziale Fizyki i Techniki Jądrowej AGH na podstawie rozprawy dotyczącej badań w dziedzinie spektroskopii mőssbauerowskiej wykonanych na monokryształach rutylu (promotorem był prof. Ruebenbauer). W tym samym roku awansowała na stanowisko adiunkta w swojej uczelni. W swojej pracy naukowej po doktoracie zajmowała się nadal tematyką badania dyfuzji domieszek atomowych za pomocą spektroskopii mőssbauerowskiej poszerzając tematykę badawczą o różne aspekty dotyczące badania struktury defektowej monokryształów, oraz stanów utlenienia i dynamiki domieszek. Opublikowane prace w
tym okresie koncentrowały się głównie na tlenku kobaltowym i na rutylu (jak w poprzednim okresie działalności naukowej). Wykonane pomiary w tlenku kobaltowym pozwoliły na opisanie ewolucji stanów walencyjnych dla atomów żelaza pochodzących z radioaktywnego rozpadu kobaltu 57 w zależności od temperatury oraz czynników stehiometrycznych. Podobne pomiary wykonane w rutylu pozwoliły na stwierdzenie, że wysokospinowe jony żelaza (Fe3+) lokalizują się w normalnych położeniach węglowych niezaburzonych przez występowanie ewentualnych wakansji tlenowych, z kolei wysokospinowe jony Fe2+ korelują z pojawieniem się wakansji tlenowych jako najbliższych sąsiadów. Niskospinowe jony Fe2+ powstają w położeniach międzywęzłowych w sąsiedztwie wakansji tlenowych. Udało się ponadto znaleźć dowód na istnienie egzotycznych stanów jonów żelaza - mianowicie Fe1+ i znaleźć ich powiązanie z szybką dyfuzją atomową wzdłuż otwartych kanałów w strukturze rutylu - chodzi tutaj o położenia międzywęzłowe w bezdefektowej strukturze kryształu.

Poza badaniami tlenku kobaltowego i rutylu dr Wdowik uczestniczyła w badaniach dynamiki sieci oraz mikroskopowych mechanizmów dyfuzji w kryształach NaCl - przy zastosowaniu rayleighowskiego rozpraszania synchrotronowego (we współpracy z grupą z Uniwersytetu Purdue, West Lafayette, USA).

W ramach opisu teoretycznego wykazała istnienie anizotropii wyższych-rzędów w kryształach kubicznych. Od strony doświadczalnej pokazała sposób badania ruchu dyfuzyjnego atomów w monokryształach wykorzystujący mechanizm rozpraszania rayleighowskiego wiązek mőßbauerowskich promieniowania synchrotronowego w kierunkach braggowskich monitorowany przy użyciu interferometru NRSR (nuclear resonant scattering of synchrotron radiation).

Należy ponadto nadmienić że omawiana powyżej tematyka naukowa rozwijana była w ożywionej współpracy międzynarodowej: z Instytutem Fizyki Materiałów Uniwersytetu w Wiedniu, z Wydziałem Chemii i Biochemii, Concordia University w Montreal, Kanada oraz ze wspomnianą już grupą badawczą z Purdue University, USA.

(w tym 3 prace opublikowane w NATO Science Series a jedna w Mol.Phys.Rep)
Kolejny okres w pracy akademickiej i naukowej dr Wdowik rozpoczyna się w roku 2005 uzyskaniem przez nią dodatkowych kwalifikacji naukowych w zakresie informatyki (Studia Podyplomowe prowadzone przez Akademię Pedagogiczną). Związana z tym jest intensywna działalność wspomagająca badania naukowe. Dr Wdowik w ramach szerszych zespołów projektowała i pomagała budować wielowęzowy klaster obliczeniowy w Instytucie Techniki Uniwersytetu Pedagogicznego oraz współtworzyła jego oprogramowanie użytkowe (głównie dla potrzeb wykonywania masowych obliczeń numerycznych). Podobnie współdziałała przy tworzeniu oprogramowania systemowego dla potrzeb systemów zbierania i akwizycji danych oraz dla cyfrowego sterowania kilku instalacji doświadczalnych. Popularnie działalność taką określa się jako pracę zaplecza technicznego. Moim zdaniem taki uproszczony pogląd jest głęboko niesłuszny i niesprawiedliwy. Raczej jest to pewna (ważna) forma normalnej działalności naukowej na pograniczu fizyki doświadczalnej oraz informatyki stosowanej.

Jeżeli idzie o działalność naukową (w bardziej tradycyjnym znaczeniu tego słowa) to w okresie od 2005 – 2012 dr Wdowik zajmowała się obliczeniami ab-initio typu DFT i DFT+U dla potrzeb badania struktury elektronowej i dynamiki idealnych sieci krystalicznych oraz kryształów z defektami struktury. W tych ramach opublikowane zostało 6 prac na temat:

Badania z pierwszych zasad silnie skorelowanego układu z defektami punktowymi

Razem z podsumowaniem zawartym z załączonym do dokumentacji habilitacyjnej Raporcie stanowi to podstawę habilitacji.

Niezależnie od cyklu 6-ciu w wym. prac wykonała podobne obliczenia typu DFT+U dla tlenku manganu uzyskując widmo fononowe oraz konkretnie informacje dot. zależności tego widma (także stałych silowych kryształu i układu sieciowego do pojemności cieplnej kryształu) od wielkości korelacji elektronowych modelowo opisywanych Hubbardowym intra-wezłowym oddziaływaniem U. Obliczenia takie są niezwykle trudne, żmudne, pracochłonne i zabierają ogromną ilość zasobów obliczeniowych i czasu. Autorka wykonała je we współpracy z prof. Parlińskim z IFJ na Bronowicach. Prof. Parliński jest najwyższej klasy specjalistą od fononów i przejść fazowych co automatycznie wystawia Pani Wdowik międzynarodowy znak jakości.

(Z pewnością jest to nieco zbyt popularnie sformułowane oraz zdecydowanie niezbyt eleganckie stwierdzenie – niemniej jednak odpowiada ono prawdzie).
Za pomocą obliczeń DPT+U Pani Wdowik badała zachowanie się kryształów niemagnetycznych (takich jak BeO, AlN, MgAl_2O_4) pod wpływem wysokich ciśnień, oraz anharmoniczność potencjałów i stabilność termodynamiczną różnych faz.

Teoretyczne badania termicznych własności przeprowadzono także dla Re O_3 materiału z ujemnym współczynnikiem rozszerzalności termicznej. Badania te (podjęte we współpracy z grupą eksperymentalną z Instytutu w Grenoble) w pełni wyjaśniały termiczne zależności w Re O_3 dostarczając mikroskopowego modelu silnie anizotropowego ruchu atomów (opublikowane w Phys. Rev B). Również we współpracy z grupą doświadczalną z Instytutu w Grenoble w oparciu o ich dane neutronowe w LaMnO_3 przeprowadzono analizę statycznych dystorsji sieci związanych z efektem Jahna-Tellera.

Jeszcze innym projektem badawczym było zbadanie wpływu magnetycznych i niemagnetycznych domieszek na gęstości ładunkowe i spinowe w kryształu alfa-żelaza.

W końcu należy wspomnieć o bardzo ważnym projekcie – Badaniu transportu jonów w lekkich związkach dla potrzeb magazynowania energii. Konkretne chodzi głównie o transport jonów litu w złożonych wodorowych związkach mających potencjalne znaczenie jako stałe elektrolity w przyszłych stało-ciałowych przemysłowych akumulatorach. Inna klasa zastosowań to związki służące do magazynowania wodoru. Projekt ten jest jednym z wielu podobnych międzynarodowych przedsięwzięć (dot. tego właśnie tematu). Prowadzony jest jako grant Szwajcarsko-Polski (koordynacja IFJ Brnowice) - jak rozumieć jest to dopiero rozpoczęty projekt gdyż brak jest jeszcze wyników i publikacji.

Formalnie podsumowując okres 2005-2012 należy wymienić 20 publikacji naukowych (w tej liczbie 6 prac wchodzących w skład samej habilitacji).

Matter. Liczba cytowań nie jest może najwyższa ale nadmienić należy, że podana tematyka nie należy do spektakularnych, modnych dziedzin ale do dziedzi w której można byłoby nazwać Inżynierią Fizyczną – który to termin należy rozumieć tutaj w jak najbardziej pozytywnym znaczeniu. Opracowywane projekty, badane związki są niezwykle ważne z punktu widzenia praktycznych zastosowań. Wymagają ogromnego wkładu pracy i czasu (do ich realizacji) i są tak trudne że pracują nad nimi jedynie nieliczne, małe zespoły z których każdy zajmuje się innymi związkami co tłumaczy niezbyt dużą liczbę cytowań.

Do w/wym. publikacji doliczyć należy udział w międzynarodowych konferencjach i workshopach (wygłoszone referaty) - całkowita liczba (po roku 2005) to 13 pozycji co dobrze świadczy o aktywności i kontaktach międzynarodowych habilitantki. W 3-ch konkretnych przypadkach Pani Wdowik należała do lokalnych komitetów organizacyjnych tych konferencji/workshopów.

Na zakończenie omawiania dorobku naukowego należy wspomnieć o doświadczeniu dydaktycznym habilitantki. Składa się na nie prowadzenie wykładów, ćwiczeń i laboratoriów z fizyki ogólnej, z fizyki ciała stałego i fizyki cząstek elementarnych. Największe jednak doświadczenie dr Wdowik ma w wykładni/prowadzeniu zajęć z informatyki stosowanej (wstępy do programowania, języki i techniki programowania, programowanie obiektowe, informatyczne wspomaganie inżynierii materiałowej). Należy jeszcze zauważyć jej duży udział w pracach organizacyjnych na jej uczelni – współautorstwo programów nauczania i przygotowywanie planów studiów szczególnie dla specjalizacji Techniczno-Informatycznych).

Obecnie przejdę do omówienia samej rozprawy habilitacyjnej na którą składa się 6 publikacji oraz krótki Raport będący zarówno podsumowaniem, komentarzem jak i końcowym uzupełnieniem do publikacji.

Raport składa się z 3-ch części. W części pierwszej – we wstępie podana jest motywacja dlaczego podjęto dany temat. Wskazane są podstawowe fakty doświadczalne, które przez długi czas nie doczekały się wystarczająco kompletnego wyjaśnienia. Omówiony jest jednocześnie stan teorii – co było wiadome a co wymagało dalszych wyjaśnień. Wstęp uzupełniony jest krótkim przypomnieniem jakie są podstawowe strukturalne i magnetyczne własności opisywanego kryształu CoO.
Druga część Raportu zatytułowana jest Metodologia. Omówione są tutaj bardzo krótko (być może zbyt krótko) pakiety VASP i WIEN2k i opisano do czego konkretnie były zastosowane. Ta część techniczna zasadniczo zawiera wszystkie konieczne informacje ale odnośnie szczegółów kieruje czytelnika do licznych referencji (przy okazji: lista referencji jest pokaźna, dobrze dobrana i zupełna).

Bardziej dokładnie opisane są fizyczne założenia implementowanej w pakietach metody pseudopotencjału i przeprowadzona jest dosyć obszerna dyskusja stosowanych przybliżeń, oraz danych przyjętych jako wejściowe dla programu. Autorka skrupulatnie tłumaczy się ze wszystkich swoich decyzji - czyli dlaczego przyjęła takie a nie inne założenia robocze.

W kolejnym rozdziale omawiona jest Metoda Pełnego Potencjału. Do obliczeń oddziaływania nadsubtelnych (mierzonych w eksperymentach mőßbauerowskich) konieczna jest znajomość funkcji falowych w okolicy jąder - a wiec metody wykorzystujące pseudopotencjały nie całkiem się nadają. Przyjmuje się jedynie, że parametry strukturalne układu uzyskane za pomocą pseudopotencjałów są wystarczająco dobre (było to sprawdzane przez odpowiednie procedury testowe).

Metoda pełnego potencjału stosuje technikę stowarzyszonych fal płaskich (APW) stosowanych w obszarze międzywęzłowych i wokółatomowych lokalnych orbitali (rozwijanych w harmoniki sferyczne w sztucznych sferach, tzw. muffin-tin). Za pomocą tej techniki dokonano obliczeń przesunięć izomerycznych domieszek żelaza w macierzystej matrycy CoO.

Kolejny rozdział (drugi część Raportu) zatytułowany jest Modelowanie defektów punktowych za pomocą superkomórek. Zawiera kilka praktycznych informacji (użytecznych zwłaszcza dla osób początkujących.). Następny rozdział Fonony opisuje krótko technikę liczenia fononów harmonicznych za pomocą diagonalizacji macierzy dynamicznej. Ponieważ w kryształach jonowych i kowalencyjnych fonony optyczne indukują oddziaływanie daleko-zasięgowe typu dipol-dipol dlatego koniecznym było zmodyfikowanie macierzy dynamicznej (dla centrum strefy Brillouina) przez dodanie odpowiedniego członu korekcyjnego - dobranego w sposób heurystyczny i z fitowalnymi (do eksperymentu) parametrami. Przedyskutowane zostały ponadto problemy techniczne związane z dynamiką fononową defektów w obliczeniach wykorzystujących superkomórki a mianowicie identyfikacja pewnych nierzeczywistych modów fononowych (o małych natężeniach), które mogą się pojawić jako artefakty wynikające z zastosowanej techniki obliczeń.
Konkretne wyniki fizyczne zrejacjiowane w Raporcie zamieszczane są w III części zatytułowanej *Struktura elektronowa tlenku kobaltu z defektami punktowymi*..

W pierwszej części omówiona została struktura elektronowa i magnetyczna dla czystego – bezdefektowego CoO (wykresy z orbitalnymi projekcjami elektronowej gęstości stanów). Obliczone zostały także krzywe despersji fononów i porównane z wynikami doświadczalnymi (nieelastyczne rozpraszanie neutronów) – zgodność jest bardzo dobra.

Metodologicznie, bardzo wartościowe jest zamieszczenie krzywych pokazujących w sposób jawny jak konkretny dobór Hubbardowskiego U wpływa w metodzie DFT +U na stałą sieci CoO, na spinowy moment magnetyczny na jonie kobaltu i wreszcie na przerwę energetyczną. Okazało się, że ta zależność zaznaczają się bardzo silnie.

Obliczenia dla niezdefektowanego CoO uzupełnione zostały identycznymi obliczeniami wykonanymi dla związku poddanego wysokim ciśnieniom. W szczególności udało się podać rozsądny mikroskopowy obraz zachodzących pod wpływem ciśnienia przejść fazowych.

Wyniki fizyczne otrzymane dla niezdefektowanego CoO uzupełnione zostały (następny rozdział C) wynikami otrzymanymi dla kryształu z wakansjami kobaltowymi czyli dla związków Co_{1-x}O. Wakansje kobaltowe są odpowiedzialne za powstawanie jonów Co3+ co zachodzi równolegle z transferem nadmiarowych elektronów do pasma p pochodzącego od tlenów. Każda wakansja odpowiada powstaniu 2-ch jonów Co3+. Jony 3+ z kolei redukują przerwę energetyczną. Nie zaburzają one przy tym wyraźniej porządku antyferromagnetycznego ponieważ rozbijają się na podszczególnie magnetyczne w sposób równomierny.

Rozdział C zamyka się odnośnikiem do pracy habilitantki w której wykonano porównania z wynikami pomiarów zdefektowanego CoO metodami spektroskopii mőssbauerowskiej.

Rozdział D zajmuje się domieszkami jonów żelaza w idealnym oraz w zdefektowanym CoO głównie z punktu widzenia pomiarów wykonywanych metodami spektroskopii mőssbauerowskiej (wartości przesunięć izometrycznych). Wykazano, że przerwa energetyczna układu domieszkowanego Fe nie zmienia się znacząco. Zbadano w jaki sposób oddziaływania nadsztelnel na jone Fe2+ zmieniają się przy zmianie siły korelacji (przy zmianie U). W kolejnym rozdziale omówiono przypadki niemagnetycznego domieszkowania (trójwartościowe jony Al3+, In3+).

Ciekawym wynikiem jest znanienie, że najbardziej stabilną lokalną konfiguracją wakansja-domieszka okazuje się być konfiguracja w której jony 3+ zajmują położenia 2-gich sąsiadów względem wakansji kobaltowej. Nie znaleziono przy tym istotnej zależności tej właśnie stabilnej konfiguracji od promienia jonowego domieszk. (Wynik ten jest w sprzeczności z wynikami niezależnych symulacji wykonanych metodami dynamiki molekularnej).
Kolejny rozdział F części III Raportu to częściowe wnioski i podsumowania.

Ostatnia IV część Raportu zatytułowana jest:

Dynamika Sieci Tlenku Kobaltu z Defektami Punktowymi.

Zarówno dorobek naukowy jak i sama rozprawa habilitacyjna dr Wdowik są w mojej ocenie bardzo wartościowe. Niezbędna duża liczba cytowań i niezbędna duża liczba prac habilitantki nie mogą być rozpatrywane jako czynnik negatywny ze względu na specyfikę opracowywanych zagadnień i ich ogromną prochłonność. Co najważniejsze: prace są bezpośrednio powiązane z eksperymentem, są zgodne z wynikami konkretnych doświadczeń i znacząco powiększają stan naszej obecnej wiedzy w dziedzinie fizyki ciała stałego.

Wymagane od pracy habilitacyjnej elementy nowości i unikalności są w niej obecne w stopniu dużo większym niż jest to ustawowo wymagane czy też jest to zwyczajowo oczekiwane.
Reasumowując stwierdzam, że zarówno przedstawiona praca habilitacyjna jak i pozostały dorobek naukowy spełniają z naddatkiem ustawowe wymagania.

Wnoszę więc o dopuszczenie Pani dr Urszuli Danuty Wdowik do dalszych etapów przewodu habilitacyjnego.

prof. dr hab. Krzysztof Rościszewski
Instytut Fizyki UJ
Reymonta 4, 30-059 Kraków
e.mail: krzysztof.rosciszewski@uj.edu.pl