Some open questions in physics

Krzysztof A. Meissner
Instytut Fizyki Teoretycznej UW
Instytut Problemów Jądrowych

Kraków, 23.10.2009
Content

- Quantum Mechanics
- Standard Model
- dark matter and dark energy
- quantum gravity
- summary
The most incomprehensible fact about the Universe is that it is comprehensible

A. Einstein
Introduction

- (part of) reality can be described by numbers
- there are correlations among these numbers – physical laws
- with proper idealization these laws seem to be universal and rigorous
Introduction

- (part of) reality can be described by numbers
- there are correlations among these numbers – physical laws
- with proper idealization these laws seem to be universal and rigorous
- we have no idea why these statements hold the answer belongs to meta-physics rather than physics...
Introduction

• use of mathematics is the source of tremendous success of physics
Introduction

• use of mathematics is the source of tremendous success of physics
• but mathematics gives us also a rigorous proof that cognition has its limits:

Gödel theorem + finite resources

“Theory of Everything” is impossible
Introduction

• in any physical phenomenon we distinguish “accidental” properties (depending on the initial conditions) and “inevitable” properties (following from the laws of physics)
Introduction

- in any physical phenomenon we distinguish “accidental” properties (depending on the initial conditions) and “inevitable” properties (following from the laws of physics)
- the fact that there are 8 (formerly 9) planets seems to be “accidental” but once we have a planet $\alpha^3 \sim T^2$ is “inevitable”
Introduction

• in any physical phenomenon we distinguish “accidental” properties (depending on the initial conditions) and “inevitable” properties (following from the laws of physics)

• the fact that there are 8 (formerly 9) planets seems to be “accidental” but once we have a planet $a^3 \sim T^2$ is “inevitable”

• explanation in physics means converting “accidental” into “inevitable”
Introduction

• in any physical phenomenon we distinguish “accidental” properties (depending on the initial conditions) and “inevitable” properties (following from the laws of physics)

• the fact that there are 8 (formerly 9) planets seems to be “accidental” but once we have a planet $a^3 \sim T^2$ is “inevitable”

• explanation in physics means converting “accidental” into “inevitable”

• how far can we go?
Cube of theories

Fundamental dimensionful constants: $1/c, \hbar, G$
Quantum Mechanics

• the most fundamental and extremely successful in our description of the physical world but...
Quantum Mechanics

• the most fundamental and extremely successful in our description of the physical world but...

• conceptual foundations (and limits) of locality, causality, Heisenberg relations unclear
Quantum Mechanics

- the most fundamental and extremely successful in our description of the physical world but...
- conceptual foundations (and limits) of locality, causality, Heisenberg relations unclear
- problem of measurement (Copenhagen, Everett, Bohm, Penrose, ...) totally unclear...
Particles of the Standard Model

- Leptons (spin 1/2, $q_\nu = 0$, $q_e = -1$):

 \[
 \begin{pmatrix}
 \nu_e \\
 e
 \end{pmatrix}_L, \quad
 \begin{pmatrix}
 \nu_\mu \\
 \mu
 \end{pmatrix}_L, \quad
 \begin{pmatrix}
 \nu_\tau \\
 \tau
 \end{pmatrix}_L
 \]

 e_R, $\nu_e R$, μ_R, $\nu_\mu R$, τ_R, $\nu_\tau R$

- Quarks (3 colors, spin 1/2, $q_u = 2/3$, $q_d = -1/3$):

 \[
 \begin{pmatrix}
 u \\
 d
 \end{pmatrix}_L, \quad
 \begin{pmatrix}
 c \\
 s
 \end{pmatrix}_L, \quad
 \begin{pmatrix}
 t \\
 b
 \end{pmatrix}_L
 \]

 u_R, d_R, c_R, s_R, t_R, b_R

- Spin 1:
 - 8 gluons g
 - W^\pm and Z^0, photon γ

- Spin 0: Higgs H
Standard Model

- extremely successful theory
 - no single experimental deviation
 - verified to unbelievable precision
but it cannot be the ultimate theory...
Standard Model

• extremely successful theory
 • no single experimental deviation
 • verified to unbelievable precision
 but it cannot be the ultimate theory...

• no gauge anomalies ⇒
 # of leptons = # of quarks
 but why 3 generations???
Standard Model

- extremely successful theory
 - no single experimental deviation
 - verified to unbelievable precision
 but it cannot be the ultimate theory...

- no gauge anomalies ⇒
 # of leptons = # of quarks
 but why 3 generations???

- why the observed values of masses and coupling constants???
 any change ⇒ we are not here...
Standard Model

- extremely successful theory
 - no single experimental deviation
 - verified to unbelievable precision
 but it cannot be the ultimate theory...

- no gauge anomalies \Rightarrow
 # of leptons $=$ # of quarks
 but why 3 generations???

- why the observed values of masses and coupling constants???
 any change \Rightarrow we are not here...

- why CP violation (and why not enough)???
Standard Model

- why spontaneous symmetry breaking
 \[\langle H \rangle = \nu \neq 0 \]
Standard Model

• why spontaneous symmetry breaking
 \(\langle H \rangle = v \neq 0 \)??

• why such huge differences in masses???

\[
\frac{m_t}{v} \approx 1, \quad \frac{m_e}{v} \approx 3 \cdot 10^{-6}, \quad \left(\frac{m_{\nu}}{v} \approx 10^{-12} \right)
\]
Standard Model

• why spontaneous symmetry breaking
 \(\langle H \rangle = v \neq 0 \)???

• why such huge differences in masses???
 \[
 \frac{m_t}{v} \approx 1, \quad \frac{m_e}{v} \approx 3 \cdot 10^{-6}, \quad \left(\frac{m_\nu}{v} \approx 10^{-12} \right)
 \]

• why proton mass \(\approx 1 \) GeV???
 (main source of luminous mass)
Standard Model

- why spontaneous symmetry breaking\[\langle H \rangle = v \neq 0\]??

- why such huge differences in masses???
 \[
 \frac{m_t}{v} \approx 1 , \quad \frac{m_e}{v} \approx 3 \cdot 10^{-6} , \quad \left(\frac{m_{\nu}}{v} \approx 10^{-12} \right)
 \]

- why proton mass \(\approx 1\) GeV???
 (main source of luminous mass)

- hierarchy problem \[\frac{v}{M_P} \approx 10^{-16}\]
 (supersymmetry, conformal symmetry)
Present content of the Universe

- radiation: $p \approx \frac{\rho}{3}$, negligible
- luminous matter: $p \approx 0$, 4%
 - (stars) 0.5%
 - interstellar gas 0.5%
 - intergalactic gas 3%
- dark matter: $p \approx 0$, 23%
- dark energy: $p \approx -\rho$, 73%
Nucleosynthesis abundances

![Graph showing element abundances relative to hydrogen compared to density of ordinary matter.](image-url)
Dark Matter and Dark Energy

• what is dark matter (supersymmetric neutralino, axion, ...)?
Dark Matter and Dark Energy

• what is dark matter (supersymmetric neutralino, axion, ...)?

• the answer probably within conventional QFT
Dark Matter and Dark Energy

• what is dark matter (supersymmetric neutralino, axion, ...)?
• the answer probably within conventional QFT
• what is dark energy (cosm. constant?)???
Dark Matter and Dark Energy

- what is dark matter (supersymmetric neutralino, axion, ...)?
- the answer probably within conventional QFT
- what is dark energy (cosm. constant?)
- why

\[
\frac{\rho_{DM}}{M_P^4} \approx 10^{-120}, \quad \frac{\rho_{DM}}{M_W^4} \approx 10^{-54}
\]
Dark Matter and Dark Energy

- what is dark matter (supersymmetric neutralino, axion, ...)?
- the answer probably within conventional QFT
- what is dark energy (cosm. constant?)???
- why

$$\frac{\rho_{DM}}{M_P^4} \approx 10^{-120}, \quad \frac{\rho_{DM}}{M_W^4} \approx 10^{-54}$$

- the answer probably requires new (not QFT like) physics – quantum gravity?
Galaxy collision
Gravity

- gravitational interaction between elementary particles is extremely weak – why???

$$\alpha_G = \frac{G m_p^2}{\hbar c} \approx 10^{-38}$$

(for EM interactions $$\alpha = e^2/(4\pi \epsilon_0 \hbar c) \approx 1/137$$)
Gravity

- gravitational interaction between elementary particles is extremely weak – why???
 \[\alpha_G = \frac{G m_p^2}{\hbar c} \approx 10^{-38} \]
 (for EM interactions \(\alpha = \frac{e^2}{4\pi \epsilon_0 \hbar c} \approx \frac{1}{137} \))
- \(\alpha_G \) is so small \(\Rightarrow \) stars are so large
 \[M_C \approx \frac{m_p}{\alpha_G^{3/2}} \approx 10^{30} \text{kg} \]
 (Chandrasekhar limit)
Quantum Gravity

• when gravity \approx EM? (G. Stoney, 1881)

$$\frac{G m^2_S}{r^2} = \frac{e^2}{4\pi\varepsilon_0 r^2} \Rightarrow m_S \approx 1.86 \cdot 10^{-9} \text{ kg}$$
Quantum Gravity

- when gravity \approx EM? (G. Stoney, 1881)

$$\frac{G m_S^2}{r^2} = \frac{e^2}{4\pi \varepsilon_0 r^2} \Rightarrow m_S \approx 1.86 \cdot 10^{-9} \text{ kg}$$

- Planck (1899) introduced ($m_P = \sqrt{\alpha m_S}$)

$$m_P = \sqrt{\frac{\hbar c}{G}} \approx 2.176 \cdot 10^{-8} \text{ kg}$$

we expect that QG sets in when $E \rightarrow m_P c^2$
Quantum Gravity

- when gravity \approx EM? (G. Stoney, 1881)

$$\frac{Gm_S^2}{r^2} = \frac{e^2}{4\pi\varepsilon_0 r^2} \Rightarrow m_S \approx 1.86 \cdot 10^{-9} \text{ kg}$$

- Planck (1899) introduced ($m_P = \sqrt{\alpha m_S}$)

$$m_P = \sqrt{\frac{\hbar c}{G}} \approx 2.176 \cdot 10^{-8} \text{ kg}$$

we expect that QG sets in when $E \rightarrow m_P c^2$

- QG – “fluctuating space-time” (???)
Quantum Gravity

• when gravity \(\approx \) EM? (G. Stoney, 1881)

\[
\frac{G m_s^2}{r^2} = \frac{e^2}{4\pi \varepsilon_0 r^2} \Rightarrow m_s \approx 1.86 \cdot 10^{-9} \text{ kg}
\]

• Planck (1899) introduced \((m_P = \sqrt{\alpha m_s}) \)

\[
m_P = \sqrt{\frac{\hbar c}{G}} \approx 2.176 \cdot 10^{-8} \text{ kg}
\]

we expect that QG sets in when \(E \rightarrow m_P c^2 \)

• QG – “fluctuating space-time” (???)

• black hole entropy may be the key issue pointing to QG (as black body radiation did)
Cube of theories

Fundamental dimensionful constants: $\frac{1}{c}$, \hbar, G
Quantum gravity – proposals

• very interesting results from the (Lorentzian) path-integral approach (Dynamical Triangulations)
Quantum gravity – proposals

• very interesting results from the (Lorentzian) path-integral approach (Dynamical Triangulations)

• String Theory

• Loop Quantum Gravity
Quantum gravity – proposals

- very interesting results from the (Lorentzian) path-integral approach (Dynamical Triangulations)
- String Theory
- Loop Quantum Gravity
 - both claim solving BH entropy problem
 - neither solved the CC problem
 - nor the initial singularity and initial conditions problems ...
String theory

- Quantum description of gauge theories and gravity
String theory

- Quantum description of gauge theories and gravity
- UV finite (?) – modular symmetry (not proven beyond two loops)
String theory

- Quantum description of gauge theories and gravity
- UV finite (?) – modular symmetry (not proven beyond two loops)
- extremely beautiful mathematically
String theory

- Quantum description of gauge theories and gravity
- UV finite (?) – modular symmetry (not proven beyond two loops)
- extremely beautiful mathematically
- but...
String theory

- lack of underlying principle
String theory

- lack of underlying principle
- only first quantized formulation with unknown equations of motion
String theory

- lack of underlying principle
- only first quantized formulation with unknown equations of motion
- theory contains higher-dimensional objects (branes) – no consistent quantum description
String theory

- lack of underlying principle
- only first quantized formulation with unknown equations of motion
- theory contains higher-dimensional objects (branes) – no consistent quantum description
- $> 10^{500}$ admissible (?) vacua (landscape)
String theory

- lack of underlying principle
- only first quantized formulation with unknown equations of motion
- theory contains higher-dimensional objects (branes) – no consistent quantum description
- $> 10^{500}$ admissible (?) vacua (landscape)
- no mechanism to break supersymmetry to leave QFT on almost flat space
String theory

- lack of underlying principle
- only first quantized formulation with unknown equations of motion
- theory contains higher-dimensional objects (branes) – no consistent quantum description
- $> 10^{500}$ admissible (?) vacua (landscape)
- no mechanism to break supersymmetry to leave QFT on almost flat space
- no single new result relevant for “low energy” particle physics or cosmology
Loop Quantum Gravity

- defined quantum mechanically
Loop Quantum Gravity

- defined quantum mechanically
- diffeomorphism invariance (background independence) built in and only diffeomorphism invariant operators allowed (volume, area...)

K.A. Meissner. Unsolved problems -- p. 23/25
Loop Quantum Gravity

- defined quantum mechanically
- diffeomorphism invariance (background independence) built in and only diffeomorphism invariant operators allowed (volume, area...)
- but no connection (yet?) to usual gravity
Loop Quantum Gravity

- defined quantum mechanically
- diffeomorphism invariance (background independence) built in and only diffeomorphism invariant operators allowed (volume, area...)
- but no connection (yet?) to usual gravity
- no dynamics
- mathematically very difficult (inseparable Hilbert spaces, forbiddingly complicated hamiltonian etc.)
Loop Quantum Gravity

- defined quantum mechanically
- diffeomorphism invariance (background independence) built in and only diffeomorphism invariant operators allowed (volume, area...)
- but no connection (yet?) to usual gravity
- no dynamics
- mathematically very difficult (inseparable Hilbert spaces, forbiddingly complicated hamiltonian etc.)
Quantum Gravity

• no sign of convergence of different approaches
Quantum Gravity

- no sign of convergence of different approaches
- problems of initial singularity, existence (or emergence) of time and space at distances $\sim l_P$, interpretation of the “wave function of the Universe” etc. totally unclear
Quantum Gravity

- no sign of convergence of different approaches
- problems of initial singularity, existence (or emergence) of time and space at distances $\sim l_P$, interpretation of the “wave function of the Universe” etc. totally unclear
- we are still very far away from understanding quantum gravity
Summary

• list of unsolved problems doesn’t get shorter...
Summary

• list of unsolved problems doesn’t get shorter...
• probably the biggest challenges in physics (that we know of!)
 • measurement problem in QM
 • explanation of values of physical constants
 • cosmological constant and quantum gravity
Summary

- list of unsolved problems doesn’t get shorter...
- probably the biggest challenges in physics (that we know of!)
 - measurement problem in QM
 - explanation of values of physical constants
 - cosmological constant and quantum gravity
- the biggest (meta-physical) mystery: why anything is subject to any law at all?
Summary

• list of unsolved problems doesn’t get shorter…
• probably the biggest challenges in physics (that we know of!)
 • measurement problem in QM
 • explanation of values of physical constants
 • cosmological constant and quantum gravity
• the biggest (meta-physical) mystery: why anything is subject to any law at all?
• Socrates’ statement invariably true: “I neither know nor think that I know”